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One of the most important concerns in parallel computing is the proper distribution of workload 

across processors. For most scientific applications on massively parallel machines, the best 

approach to this distribution is to employ data parallelism; that is, to break the datastructures 

supporting a computation into pieces and then to assign those pieces to different processors. 

Collectively, these partitioning and assignment tasks comprise the domain mapping problem.  

Extensive practical experience has shown that in order to achieve high performance, a domain 

mapping must be found in which each processor has about the same workload and in which the 

overhead due to interprocessor communication is kept small. Unfortunately, discovering such a 

mapping can be difficult, particularly for the large, unstructured domains typical of modern 

scientific/engineering calculations.  

Many approaches to this problem have been tried over the years, but the results have often been 

disappointing. Approximate global optimization strategies such as simulated annealing and 

genetic algorithms are capable of finding excellent mappings, but are too expensive in 

practice.Simple heuristics based on ordering of coordinate or topological information are quick 

but they perform poorly on many complicated grids. More sophisticated heuristics typically 

show erratic behavior or are very problem specific.  

We have recently developed several effective and economical domain mapping methods that are 

appropriate for finite difference, finite element, particle-in-cell and similar types of scientific 

computations. Our methods employ a graph model of the calculation in which vertices represent 

computation and edges represent communication. This model reduces the decomposition 

problem to one of graph partitioning, i.e. dividing the graph into sets with equal numbers of 

vertices such that a minimal number of edges cross between sets (an NP-hard problem). The 

assignment problem then requires that we find a mapping of these sets to processors that avoids 

messages between architecturally distant processors.  

One of our new methods is a generalization of a recently proposed graph partitioning approach 

which has generated considerable interest because it seems to offer a good balance between 

generality, quality and efficiency. This spectral method partitions a graph by considering an 

eigenvector of an associated matrix to gain an understanding of global properties of the graph 

[9,10]. The graph is bisected using this eigenvector and the process repeated recursively on each 

of the halves until the desired number of sets is obtained.  

We have improved this spectral technique in several important ways. First, we have made 

realistic modeling of scientific computations possible by allowing for unbalanced computation 

and communication loads in our graph model. Second, we have reformulated the objective 
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function so that we try to minimize not only the amount of communication between processors, 

but also the number of messages traveling between distant processors in a hypercube or mesh 

architecture. We have therefore addressed, for these important architectures, both the 

decomposition and assignment problems. (Most previous methods, including the original spectral 

method, have considered only the decomposition problem.) Third, we have developed a method 

of using two or three eigenvectors to partition the graph into four or eight pieces at each stage of 

recursion rather than simply bisecting based on one eigenvector. This results in better mappings 

at a lower net cost than that incurred by other spectral methods. Fourth, we have paired the 

spectral method with a generalization of a well known graph partitioning technique due to 

Kernighan and Lin (KL) [7]. The KL algorithm is a local optimization which improves an initial 

partitioning. The spectral method is quite good at coarsely dividing a graph, but often does 

poorly in the fine details, whereas KL exhibits precisely the opposite behavior. When paired, the 

combined method is substantially more robust and effective than either alone. This work has 

been reported in several publications [2,3,4,5,6].  

While spectral methods are much more economical than simulated annealing and other methods 

capable of finding very high quality partitions, they are still costly in comparison with the actual 

run time of many applications. There is consequently a strong interest in developing comparably 

powerful mapping methods with substantially lower cost. One approach is to accelerate the 

eigenvector computation in the spectral method by employing a multi-level iterative eigensolver. 

The graph is coarsened down several levels, an eigenvector is computed on the coarsest grid 

where it is relatively cheap to do so, and the eigenvector is then projected back up through the 

grid hierarchy to the finest grid, undergoing a refinement process as it is projected. This method 

was proposed and implemented by Barnard and Simon [1], who found that it did substantially 

reduce the run time of spectral bisection.  

We have developed an alternative approach in which rather than propagating an eigenvector of 

thecoarsest grid back through the heirarchy, we instead propagate a partitioning. We use a 

spectral method to determine the partitioning of the coarsest grid, and refine the partition as it is 

projected onto finer grids using the Kernighan-Lin algorithm described earlier. This approach 

avoids various numerical difficulties associated with the computation and refinement of 

eigenvectors of very large matrices, and typically produces comparable partitions in less time 

than those obtained with multilevel spectral bisection. Furthermore, this new multilevel method 

retains the ability to operate as a quadrisection or octasection algorithm, and can be applied to 

weighted graphs transparently.  

We have tested these new methods on a number of unstructured grids from finite element, finite 

difference and particle-in-cell application codes. We have selected two representative problems 

for presentation here. The first is the dual graph of a finite element airfoil mesh generated by 

Barth at NASA Ames. This graph has 8034 vertices and 11813 edges, and is the subject of the 

three figures. The decomposition into eight sets depicted in Figure 1 was generated using the 

popular inertial method [8,11]. Figure 2 shows a decomposition using the original spectral 

bisection algorithm, while Figure 3 presents a decomposition produced using our new spectral 

octasection + KL method. In each case elements sharing a color are assigned to the same 

processor.  

http://www.cs.sandia.gov/tech_reports/rwlelan/domain_mapping_fig1.gif
http://www.cs.sandia.gov/tech_reports/rwlelan/domain_mapping_fig2.gif
http://www.cs.sandia.gov/tech_reports/rwlelan/domain_mapping_fig3.gif


It is clearly difficult to judge the merits of these partitions visually, even for this relatively small 

two-dimensional problem. This reflects the general difficulty of the domain mapping problem. 

We can however calculate objective measures of success with respect to our graph model, and 

these are given in Table 1 for a variety of different partitioning methods. The cuts values are the 

number of edges that connect vertices assigned to different sets, which corresponds to the total 

volume of interprocessor communication. The values in the hops columns weight each cut edge 

by the number of wires between the corresponding processors in a hypercube network. In most 

scientific applications, many messages are being simultaneously routed, and this second metric 

accounts for message congestion in a mesh or hypercube multiprocessor.  

 

_____________________________________________________________ 

    8 Processors 64 Processors 

Method   cuts  hops cuts     hops 

_____________________________________________________________ 

 

Inertial                      317   396    1166     1855 

Spectral Bisection           212   286     997     1661 

Spectral Bisection + KL       190  261     871     1472 

Spectral Octasection + KL     197    200     911     1287 

Multi-Level Bisection         197   276     855     1467 

Multi-Level Octasection       240   240     991     1414 

 

_____________________________________________________________ 

 

Table 1: Summary of method performance on airfoil mesh. 

The second example mesh is a three-dimensional finite element mesh of a complex 

manufacturing component generated using advanced meshing software at Sandia National 

Laboratories. This graph has 6673 vertices and 55664 edges. Results of a partition into eight sets 

are given in Table 2, and the decomposed mesh is shown in Figure 4.  

____________________________________________ 

    Sandia Mesh 

 Method   cuts hops 

___________________________________________ 

 

Inertial                      4652   5594 

Spectral Bisection            3425    5084 

Spectral Bisection + KL       2562   3847 

Spectral Octasection          4138   4735 

Spectral Octasection + KL     3140   3420 

Multi-Level Bisection         2577   3780 

Multi-Level Octasection      3365   3514 

____________________________________________ 

 

Table 2: Performance of partitioning algorithms on machine part mesh. 

For both these problems spectral octasection plus KL was clearly the best method at minimizing 

hops. For minimizing cuts, the multi-level bisection algorithm and spectral bisection plus KL 

were about equivalent, but the multilevel algorithm ran significantly faster. The multi-level 

octasection method, while still competitive, did not perform as well as expected. We believe this 

http://www.cs.sandia.gov/tech_reports/rwlelan/domain_mapping_fig4.gif


is because a simple local strategy like Kernighan-Lin has difficulty refining partitions into more 

than two sets.  

The code that produced these results is available for public use; requests should be directedto the 

authors.  
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